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Abstract

We present an algorithm to efficiently and robustly process colli-
sions, contact and friction in cloth simulation. It works with any
technique for simulating the internal dynamics of the cloth, and
allows true modeling of cloth thickness. We also show how our
simulation data can be post-processed with a collision-aware sub-
division scheme to produce smooth and interference free data for
rendering.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling;

Keywords: cloth, collision detection, collision response, contacts,
kinetic friction, static friction, physically based animation

1 Introduction

Collisions are a major bottleneck in cloth simulation. Since all
points are on the surface, all points may potentially collide with
each other and the environment in any given time step. Moreover,
for believable animation the number of particles is generally in the
tens of thousands or more. Since cloth is very thin, even small inter-
penetrations can lead to cloth protruding from the wrong side. This
is visually disturbing and can be difficult to correct after the fact
either in the next time step or in post-processing. While rigid body
simulations often have relatively few collisions per object (apart
from resting contact), deformable bodies naturally give rise to large
numbers of collisions varying in strength from resting contact to
high speed impact. Two-dimensional manifolds like cloth are the
worst case. Näıve methods for detecting and stopping every colli-
sion can quickly grind the simulation to a halt.

This paper presents a collision handling algorithm that works
with any method for simulating the internal dynamics (i.e. stretch-
ing, shearing, and bending) to efficiently yet robustly produce vi-
sually complex motion free from interference as in figure 1. The
key idea is to combine a fail-safe geometric collision method with a
fast (non-stiff) repulsion force method that models cloth thickness
as well as both static and kinetic friction. Ever since [Moore and
Wilhelms 1988] proposed that repulsion forces are useful for con-
tact whereas exact impulse-based treatment is useful for high veloc-

Figure 1:Initially, a curtain is draped over a ball on the ground.
The ball moves, flipping the curtain over on top of itself pro-
ducing stable folds and wrinkles using our static friction model.
Another ball enters the scene and pushes through the compli-
cated structure of folds before slipping underneath unraveling
the curtain.

ity impact, authors have toyed with using both. For example, [Sims
1994] switched between instantaneous impulses for high velocities
and penalty spring forces for low velocities to treat his evolving
articulated rigid body creatures. Although similar in spirit to our
approach, we always use both techniques in a fully hybridized and
efficient manner.

We view repulsion forces, e.g. during resting contact, as a way
to deal with this vast majority of collisions in a simple and efficient
manner allowing us to use a more expensive but completely robust
method to stop the few that remain. Since our repulsion forces han-
dle most of the self-interaction, it is desirable to make them compu-
tationally efficient to apply. Therefore we propose using a repulsion
spring model that is not stiff. In contrast, many authors use compu-
tationally expensive stiff repulsion springs, e.g. with force inversely
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proportional to separation distance, since they do not have a robust
alternative for stopping any remaining collisions. See e.g. [Moore
and Wilhelms 1988; Lafleur et al. 1991; Baraff and Witkin 1998],
although we note that some of the difficulties associated with the
stiffness of the repulsion springs was partially alleviated by using
an implicit method for the time integration in [Baraff and Witkin
1998].

Our robust geometric collision algorithm is the first scheme that
guarantees no dynamic self-interference of cloth. [Moore and Wil-
helms 1988] started in this direction proposing a hard-to-solve fifth
order polynomial to detect point-face collisions. This was aban-
doned by the community until [Provot 1997] reduced it to a cubic
and extended it to treat edge-edge collisions. However, Provot did
not properly account for rounding errors, so self-intersection could
still occur. Generally, these difficulties led the community to allow
self-intersection, and then attempt to detect and correct it after the
fact. For example, [Volino and Magnenat Thalmann 1995; Volino
et al. 1995; Volino and Magnenat-Thalmann 1997; Volino et al.
2000] proposed a number of methods such as “most probable” ori-
entations for collisions, i.e. nodes vote on which side they would
like to be on and themajority wins. Although this gives no guar-
antee of physical consistency, or that the method even works, they
did produce convincing simulations of a ribbon folding, garments
crumpling in a dryer, and a stack of cloth. The complexity involved
with unraveling self-intersection has led many to use large repul-
sion forces to keep the cloth well separated, but this leads to visual
artifacts with cloth seemingly floating over itself at large distances
with little or no friction. Since our method avoids nonphysical
self-interference altogether, we do not need large repulsion forces
or complicated and unreliable algorithms for detecting and fixing
self-intersection. A further advantage over methods that allow self-
intersection, even when they succeed in recovering from it, is that
our cloth is always properly constrained. This is necessary to cap-
ture the bulk and small scale crumpling apparent in complex folds.

A key ingredient of our new algorithm is that we do not work
directly with positions but only obtain positions by integrating ve-
locities. Thus, given a current non-interfering state for our cloth,
the collision handling problem can be reduced to finding velocities
that guarantee a non-interfering state at the end of the time step.
Moreover, given a current non-interfering state and a proposed set
of new positions at the end of the time step, under a linear trajec-
tory assumption we can compute a velocity to be used along with
the initial state in our collision processing algorithm. This allows us
to cleanly separate the time evolution of the internal cloth dynamics
(and the environment around the cloth) from the collision process-
ing algorithm. That is, the result of the time evolution is merely
used as an initial guess for the final position of the cloth. Then this
initial guess is modified to account for any collisions. This allows
us to easily integrate our collision, contact and friction processing
algorithm with a pre-existing cloth dynamics engine.

Our approach to static and kinetic friction is based on the re-
pulsion forces and is trivial to apply even for cloth-cloth interac-
tion. Correctly preventing self-intersection and modeling static and
kinetic friction, especially for cloth-cloth contacts, isessentialfor
producing the detailed time-evolving folds and wrinkles exhibited
by cloth. Our treatment gives highly realistic folds and wrinkles as
demonstrated in the figures.

2 Other Work

There is a rich history of research on contact and collisions in the
graphics community, and we cannot possibly cover it all due to
space limitations. However, we will mention a number of these
works where appropriate throughout the text. For example, [Baraff
and Witkin 1998; Provot 1995; Provot 1997; Volino et al. 1995;

Jimenez and Luciani 1993; Moore and Wilhelms 1988] are cited a
number of times.

Baraff carried out a detailed study of numerical methods for rigid
body motion with contact and friction in a series of papers [Baraff
1989; Baraff 1990; Baraff 1991; Baraff 1993; Baraff 1994]. [Gour-
ret et al. 1989] simulated a hand grasping an object using a finite
element model for both the hand and the object. They detected
collision as the overlapping of volumetric objects and subsequently
treated collision, contact and friction based on the size of the over-
lap (including reactive repulsive forces). [Mirtich and Canny 1995]
showed that one could produce physically plausible results model-
ing colliding, rolling, sliding, and resting contact for rigid bodies
as a series of collision impulses, or micro-collisions. For exam-
ple, a block sitting on a table experiences many micro-collisions
keeping it from sinking into the table. They used an infinitesi-
mal collision time, Poisson’s hypothesis, and a Coulomb friction
model. [O’Brien and Hodgins 1999] used a finite element model
to simulate elastic brittle objects producing impressive animations
of fracture. Collisions were detected via static interpenetration and
resolved with penalty forces. Although the penalty forces could be
stiff, they stated that their finite element model was relatively just
as stiff dictating a small time step anyhow.

Although we use triangles to represent our surface, other rep-
resentations may be used. [Herzen et al. 1990] addressed colli-
sions between parametric surfaces, [Grinspun and Schröder 2001]
worked with subdivision surfaces, and an implicit surface formula-
tion of contact and collision processing was demonstrated in [Gas-
cuel 1993; Desbrun and Gascuel 1994].

3 Cloth Model

Since this paper is concerned with collisions, particularly self-
collisions, we do not address internal cloth dynamics. Those in-
terested in cloth modeling are referred to the survey article of [Ng
and Grimsdale 1996] and the book of [House and Breen 2000]. We
also make specific mention of the CAD apparel system in [Okabe
et al. 1992], the work of [Breen et al. 1994] using experimentally
determined measurements for cloth properties, and the seminal pa-
pers of [Terzopoulos et al. 1987; Terzopoulos and Fleischer 1988a;
Terzopoulos and Fleischer 1988b; Terzopoulos and Witkin 1988]
on constitutive modeling of deformable bodies for computer graph-
ics. In addition, [Baraff and Witkin 1998] proposed an implicit time
stepping method and generated convincing results despite dropping
nonsymmetric terms from their matrix. Further approximations
were made in [Desbrun et al. 1999], e.g. violating local preser-
vation of angular momentum, in order to obtain interactive rates
while sacrificing a little realism.

For the purposes of demonstrating our collision handling, we use
a simple mass-spring model for the internal cloth dynamics, as op-
posed to a true constitutive model. However, in figure 4 we also
illustrate the efficacy of our approach with a highly sophisticated
model from an industrial production system. In our basic model,
particles are arranged in a rectangular array with structural springs
connecting immediate neighbors. Diagonal springs provide shear
support, and springs connected to every other node (with a stabi-
lization spring attached to the center node in between) resist bend-
ing. We make the edges and corners of the cloth slightly heavier by
giving all particles the same mass instead of a mass proportional to
the area of the surrounding cloth.1 The heavier edges and corners
give the cloth an attractive flare similar to that of real cloth where
tailors often make hems a little heavier. This basic cloth model has
been used by many authors, e.g. [Provot 1995].

1The equal mass assumption also simplifies many of the formulas pre-
sented in this paper. Generalizing to the unequal mass case is straightfor-
ward.
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4 Limiting the Strain and Strain Rate

Sometimes triangles are undesirably stretched or compressed by
large percentages. A rule of thumb in computational mechanics
is that a triangle edge should not change length by more than 10%
in a single time step, see e.g. [Caramana et al. 1998]. This can be
enforced by either adaptively decreasing the time step or nonphysi-
cally decreasing the strain rate. This rule of thumb is generally used
to obtain better accuracy, as opposed to stability, and thus it is used
in conjunction with implicit time stepping algorithms as well, see
e.g. [Baraff and Witkin 1998].

[Provot 1995] addressed this issue in a novel way processing the
cloth after each time step with an iterative algorithm that repairs ex-
cessively deformed triangles. This algorithm focused on the overall
strain as opposed to the strain rate (although [Provot 1995] mistak-
enly referred to this as the deformation rate). [Provot 1995] looped
through the mesh changing the positions of the nodes on edges that
had deformed by over 10%. Since adjusting the position of one
node affects the length of all the edges containing it, an iterative
process was used. Good results were obtained even though the al-
gorithm does not converge in certain situations, e.g. when all the
boundaries of the cloth mesh have constrained (fixed) positions that
force an expansion beyond 10%. [Provot 1995] illustrated that this
iterative method was significantly more efficient than arbitrarily in-
creasing the spring stiffness when one is dissatisfied with the degree
of mesh deformation in a numerical simulation.

Although this method seems to work well, it involves moving
nodes and can therefore induce self-intersection in the mesh. Thus,
to fit this method into the framework of our collision processing
algorithm, we adjust velocities instead of positions. At each time
step, we calculate the candidate new spring lengths using the cur-
rent velocities. Then we apply momentum-conserving corrective
impulses to the velocities to ensure that all springs are deformed
by a maximum of 10% from their rest length at the end of the time
step (ignoring bending springs). These impulses influence the fu-
ture strains of surrounding springs, and thus an iterative procedure
is needed to guarantee that no spring deforms to over 10% of its rest
length during the time step. This is essentially equivalent to using
biphasic springs with a much stiffer spring constant beyond 10%
deformation, and the iterative procedure is similar to using implicit
time stepping when the stiffer spring constant is activated. This
mimics the physical behavior of cloth (and skin!), which offers lit-
tle resistance to small deformations but becomes stiff after a critical
deformation is reached.

We apply this deformation limiting procedure using a Jacobi iter-
ative approach (parallel rather than sequential), and although con-
vergence is not guaranteed, generally only one or two iterations
per time step are required for visually pleasing results. Although
a Gauss-Seidel iterative approach (sequential rather than parallel)
generally converges faster, it can introduce a noticeable bias accord-
ing to which parts of the cloth are updated first (although this can be
mitigated to some degree by using random orderings). Moreover,
Jacobi style iteration is easier to parallelize for high performance.

In addition to the strain, we also limit the strain rate according to
the rule of thumb mentioned above. Although, this is usually done
by adaptively reducing the time step, these smaller time steps can
lead to a loss of efficiency. To avoid slowing the simulation, we
continually monitor the strain rate and use momentum-conserving
impulses to reduce it so that springs do not change their current
length by more than 10% during a time step. This trade-off of ac-
curacy for efficiency does not seem to induce any unwanted visual
artifacts and is similar to the traditional damping of an implicit time
discretization of the equations. We use a Gauss-Seidel iterative ap-
proach in order to accelerate convergence. Only a few iterations are
needed as the fastest deforming edges are rapidly damped to reason-
able deformation rates. Convergence is not required since we can

still adaptively reduce the time step, and after only a few iterations
only a moderate reduction of the time step is necessary. [Volino
et al. 1995] proposed a philosophically similar technique that mon-
itors local mechanical energy variations and artificially distributes
kinetic energy through momentum transfers in regions where insta-
bility might occur. Similarly, [Baraff and Witkin 1998] used their
implicit time integration scheme to automatically damp the local
energy generated by their treatment of collisions.

5 Time Discretization

We cleanly separate the time evolution of the internal cloth dynam-
ics (and the environment around the cloth) from the collision pro-
cessing algorithm. This allows us to easily integrate our collision,
contact and friction processing algorithms with a pre-existing cloth
dynamics engine. Starting at timet = 0 with cloth positionsx0 and
velocitiesv0, the algorithm is as follows. Forn = 0,1,2, . . .

• Select a collision time step size∆t and settn+1 = tn +∆t
• Advance to candidate positions̄xn+1 and velocitiesv̄n+1 at

time tn+1 with the cloth internal dynamics
• Compute the average velocitȳvn+1/2 = (x̄n+1−xn)/∆t
• Checkxn for proximity (section 6), then apply repulsion im-

pulses (section 7.2) and friction (section 7.3) to the average
velocity to getṽn+1/2

• Check linear trajectories fromxn with ṽn+1/2 for collisions
(section 6), resolving them with a final midstep velocity
vn+1/2 (sections 7.4 and 7.5)

• Compute the final positionsxn+1 = xn +∆tvn+1/2

• If there were no repulsions or collisions, setvn+1 = v̄n+1

• Otherwise, advance the midstep velocityvn+1/2 to vn+1 (sec-
tion 7.6)

When repulsions or collisions appear, our method for deter-
mining the final velocities is essentially central time differencing
[Hughes 1987]. In fact, we use central time differencing for our in-
ternal cloth dynamics as well, though we stress that any reasonable
algorithm could be used for that purpose, e.g. one large implicit
time step as in [Baraff and Witkin 1998] or many small explicit
Runge-Kutta steps.

The algorithm is stable for any collision time step∆t, thus∆t can
be chosen adaptively in a straightforward manner. For example, we
choose a minimum∆t as the time step of the cloth dynamics evolu-
tion and a maximum∆t on the order of one frame, and start with the
maximum. We halve the time step when an actual collision occurs,
i.e. the repulsion forces aren’t adequate, and try the time step over
again only doing the full collision processing at the minimum∆t.
Whenever we get three successful time steps in a row we double
∆t again. Adaptive time stepping was also addressed in [Baraff and
Witkin 1998].

6 Proximity and Collision Detection

To accelerate the detection of proximities for repulsions and of in-
tersections for collisions, we use an axis-aligned bounding box hier-
archy. It is built bottom-up once at the beginning of the simulation
using the topology of the cloth mesh. In one sweep we greedily
pair off adjacent triangles to get parent nodes, then in a sweep in
the opposite direction pair off these to get the next level up, and so
on alternating sweep directions until we are left with one root node.

At each time step we calculate the extents of the axis-aligned
boxes for the repulsion calculation (section 7.2) by taking a box
around each triangle enlarged by the thickness of the cloth (e.g.
10−3m or 1mm), and then taking the union of the extents in each
axis direction as we move up the hierarchy. We also recalculate the
hierarchy for each iteration of the collision algorithm (section 7.4)
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by taking a box around each triangleand its candidate position at
the end of the step (since we have to cover the path that the triangle
takes during the time step) enlarged by the rounding error tolerance
(e.g. 10−6m), again merging as we move up the hierarchy. In both
cases, we get a set of candidates for interference by intersecting the
box to be tested with the root of the tree; only if it overlaps do we
recursively check its children, proceeding until we reach the leaves
of the tree. The leaves we reach indicate on which triangles the ac-
tual geometry tests need to be performed. These tests break down
into checking points against triangular faces and edges against other
edges (naturally we don’t compare a point against the triangle that
contains it, or an edge against an edge that shares an endpoint). For
more details on hierarchical methods and bounding volume hier-
archies, see [Hahn 1988; Webb and Gigante 1992; Barequet et al.
1996; Gottschalk et al. 1996; Lin and Gottschalk 1998]. Further
pruning of unnecessary tests between adjacent patches in low cur-
vature regions of cloth is possible, at least for static proximity tests,
see [Volino and Magnenat-Thalmann 1994; Volino et al. 1995].

In what follows we use the shorthand~xi j to mean~xi −~x j .
To check if a point~x4 is closer than some thicknessh to a triangle

~x1~x2~x3 with normaln̂ we first check if the point is close to the plane
containing the triangle:|~x43 · n̂|< h. If so, we project the point onto
the plane and compute the barycentric coordinatesw1,w2,w3 with
respect to the triangle:[

~x13 ·~x13 ~x13 ·~x23
~x13 ·~x23 ~x23 ·~x23

][
w1
w2

]
=

[
~x13 ·~x43
~x23 ·~x43

]
w1 +w2 +w3 = 1.

These are the normal equations for the least-squares problem of
finding the pointw1~x1 + w2~x2 + w3~x3 (in the plane) closest to~x4.
If the barycentric coordinates are all within the interval[−δ ,1+δ ]
whereδ is h divided by a characteristic length of the triangle, the
point is close.

To check if an edge~x1~x2 is close to another edge~x3~x4 we find
the pair of points, one on each edge, that are closest and check their
distance. The search for the two closest points begins by check-
ing for the degenerate case of parallel edges, i.e. if|~x21×~x43| is
smaller than a round-off tolerance. If so, it reduces to a simple one-
dimensional problem. Otherwise, we find the points on the infinite
lines that are closest via the normal equations:[

~x21 ·~x21 −~x21 ·~x43
−~x21 ·~x43 ~x43 ·~x43

][
a
b

]
=

[
~x21 ·~x31
−~x43 ·~x31

]
.

If these points are on the finite edges we are done, otherwise we
clamp them to the endpoints. The point that moved the most during
clamping is guaranteed to be one part of the answer, and the second
point is found by projecting the first onto the second infinite line
and clamping to the finite edge. The direction pointing from one
point to the other is saved as the “normal” vector. We also save
their relative positions along the edges, i.e. the weights 0≤ a,b≤ 1
so that the points are~x1 +a~x21 and~x3 +b~x43.

To detect a collision between a moving point and a moving trian-
gle, or between two moving edges, we first find the times at which
the four points are coplanar assuming they move with constant ve-
locity over the collision time step as in [Moore and Wilhelms 1988;
Provot 1997; Doghri et al. 1998]. The latter two showed this re-
duces to finding the roots of a cubic equation,

(~x21+ t~v21)× (~x31+ t~v31) · (~x41+ t~v41) = 0.

Any roots outside of the interval[0,∆t] are discarded, and then the
remaining roots are checked in increasing order with proximity tests
at timet. If the elements are closer than a small rounding error tol-
erance (10−6m for our simulations, which is 1000 times smaller
than the cloth thickness), we register a collision. We likewise check

for proximity at the end of the time step,t = ∆t, in case rounding er-
rors hide a collision at the boundary between two time steps. While
earlier works neglected rounding error, our approach guarantees (if
collisions are resolved) that the cloth is separated by at least the
rounding error tolerance at every time step and never self-intersects
during time steps.

7 Contact and Collision Response

7.1 Interpolating within the cloth

We often need to deal with two points from the cloth, computing
their relative velocity or applying an impulse to them. However, we
cannot directly look up or alter the velocities of such points, and
instead must deal with the corners of the triangle or endpoints of
the edges.

To compute the velocity of a point interior to a triangle or edge
we use linear interpolation, which is exact for affine deformations
(i.e. translation, rotation, and affine shearing and scaling). In partic-
ular, if a point interior to a triangle~x1~x2~x3 has barycentric coordi-
natesw1,w2,w3 (calculated during proximity or collision detection)
its interpolated velocity isw1~v1 + w2~v2 + w3~v3, and similarly if a
point interior to an edge~x1~x2 is the fractiona along the edge then
its interpolated velocity is(1−a)~v1+a~v2. Note that we are finding
the velocity of a specific piece of material involved in a contact or
collision, i.e. the weightswi or a are fixed so their time derivatives
do not appear.

If an impulse of magnitudeI in directionn̂ needs to be applied
to two points in the cloth (i.e.I n̂ to the first and−I n̂ to the second),
we instead apply impulses to the triangle corners or edge endpoints,
weighted by the barycentric coordinates, so that the desired change
in relative (interpolated) velocity for the two points is achieved. For
the point-triangle case, where an interior point of triangle~x1~x2~x3
with barycentric coordinatesw1,w2,w3 is interacting with point~x4,
we compute adjusted impulses

Ĩ = 2I
1+w2

1+w2
2+w2

3

~vnew
i = ~vi +wi(Ĩ/m)n̂ i = 1,2,3

~vnew
4 = ~v4− (Ĩ/m)n̂

assuming all nodes have massm. For the edge-edge case where
a point with relative positiona along the edge~x1~x2 interacts with
a point with relative positionb along the edge~x3~x4, the adjusted
impulses are

Ĩ = 2I
a2+(1−a)2+b2+(1−b)2

~vnew
1 =~v1 +(1−a)(Ĩ/m)n̂ ~vnew

2 =~v2 +a(Ĩ/m)n̂
~vnew

3 =~v3− (1−b)(Ĩ/m)n̂ ~vnew
4 =~v4−b(Ĩ/m)n̂.

Weighting the impulses in this way introduces appropriate torques
for off-center interactions as well as giving continuity across trian-
gle boundaries, and converges to the expected formulas when the
interior points approach mesh nodes.

7.2 Repulsions

Resolving the tens of thousands of collisions that can readily oc-
cur in folding and contact situations can be prohibitively expensive.
This is why repulsion forces are mandatory. They dramatically re-
duce the number of collisions usually eliminating them altogether
making our collision processing algorithm not only tractable but
efficient. Our cloth is given a realistic thickness, e.g. 1mm, and re-
pulsion forces are only applied between pieces of cloth that have
this close proximity. As discussed in section 6, we use an axis-
aligned bounding box hierarchy to make this proximity detection
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efficient. Proximity is determined for both point-triangle pairs and
edge-edge pairs. If a pair is close enough, then two kinds of repul-
sion forces are applied. The first is based on an inelastic collision,
and the second is a spring based force.

[Baraff and Witkin 1992; Baraff and Witkin 1994] discussed col-
lision modeling for deformable bodies pointing out that when a dis-
cretized rod collides with a wall, the endpoint of the rod should
come impulsively to rest, i.e. the endpoint is subject to a completely
inelastic collision impulse. Subsequently the rod stores energy in
compression and then expands, separating from the wall. The load-
ing and unloading of the elastic rod models a completely elastic
collision. They pointed out that inelasticity can only be introduced
by adding damping forces internal to the rod that dissipate energy
due to the collision. Other authors have used completely inelas-
tic collisions as well, such as [Desbrun et al. 1999] and [Carignan
et al. 1992] (who used completely inelastic collisions to remove the
“kicks” generated by the repulsion springs of [Lafleur et al. 1991]).
We take a similar approach, modeling all cloth-cloth collisions and
cloth-object collisions using an identically zero restitution coeffi-
cient in Poisson’s hypothesis. The energy stored in deformations
of our mass-spring model when one of the nodes abruptly comes
to rest against an object in its path is released as the cloth restores
itself, causing it to bounce. In fact, most real-world cloth-cloth and
cloth-object collisions are fairly inelastic, so even with a zero resti-
tution coefficient one should take care to monitor the energy stored
within the cloth. We do this intrinsically by limiting the strain rate
as discussed in section 4.

Since our repulsion forces are meant to dramatically reduce the
number of subsequent collisions, we incorporate a completely in-
elastic collision into our repulsion force. Suppose two points in the
cloth, one inside a triangle and one a node of the mesh or both in-
terior to mesh edges, are close and have relative velocityvN in the
normal direction which is less than zero, i.e. they are approaching
each other. (See section 7.1 above for details on interpolating ve-
locities interior to triangles and edges, and section 6 for details on
the normal direction used in point-triangle and edge-edge interac-
tions.) To stop the imminent collision we apply an inelastic impulse
of magnitudeIc = mvN/2 in the normal direction. (See section 7.1
for how we distribute the impulse to the mesh nodes involved.)

Since our cloth model includes a realistic cloth thickness, we
would like to ensure that pieces of the cloth are well separated at
a distance on the order of this cloth thickness. This helps cloth
to slide over itself (and objects) without the excessive snagging
caused by the discretization errors resulting from the representa-
tion of smooth surfaces with discrete triangles. When pieces of
cloth are too close together, there is a compression of cloth fibers,
and a second repulsion force is applied to model this compression.
The repulsion force is proportional to the overlap beyond the cloth
thicknessh (e.g. 1mm). However, since our robust collision han-
dling algorithm (see section 7.4) will stop every intersection, our
spring repulsion force is limited to a maximum when the objects
touch, thus avoiding problems with stiffness. Furthermore, we limit
our repulsion force so that objects are never propelled outside this
overlap region in a single time step. This not only helps to reduce
stiffness, but allows cloth in contact to stay close enough together
to feel repulsion forces in subsequent time steps. This is important
since the repulsion force magnitude is used to model friction, and
thus friction forces are also felt in future time steps producing stable
folds and wrinkles that add to the visual realism. Many other au-
thors have used spring based repulsion forces, see e.g. [Jimenez and
Luciani 1993; Marhefka and Orin 1996], but their methods suffered
from undue stiffness since an arbitrary amount of interpenetration
was allowed to occur. Again, this is alleviated in our model by the
robust geometric collision algorithm that stops interpenetration re-
sulting in a bound on the magnitude of the spring based repulsion
force.

The spring based repulsion force is modeled with a spring of
stiffnessk. As a simple heuristic, we found that matching the stiff-
ness of the stretch springs in the cloth gave good results. The over-
lap is

d = h− (~x4−w1~x1−w2~x2−w3~x3) · n̂

giving a spring force ofkd in the direction ˆn. Multiplying by ∆t
gives the impulse. As discussed above, we limit this so that the rel-
ative velocity change will reduce the overlap by at most some fixed
fraction (e.g..1h) in one∆t time step. If the normal component of
relative velocityvN ≥ .1d/∆t already we apply no repulsion, other-
wise we compute the impulse magnitude

Ir =−min

(
∆tkd,m

(
.1d
∆t

−vN

))
and distribute it to the mesh nodes as explained in section 7.1.

The repulsion forces can either be applied sequentially or all at
once in a parallel update. One drawback of the parallel update is
that situations involving multiple interactions can lead to undesir-
able behavior, e.g. as impulses from multiple inelastic collisions are
added together. This can be alleviated to some degree by keeping
track of the number of interactions a node is involved in and divid-
ing the resulting impulses by that number. Another remedy consists
of multiplying the inelastic collision impulses by a suitable relax-
ation parameter less than one. We found.25 works fine though the
algorithm seems fairly insensitive to small changes in this value.

7.3 Friction

We use Coulomb’s model for friction, both static and kinetic, with a
single friction parameterµ. The repulsion forceFR from section 7.2
is the negative of the normal forceFN pressing the cloth together.
Therefore a friction force, in the direction of the pre-friction rel-
ative tangential velocity~vpre

T but opposite to it, has magnitude at
most µFN. This integrates to an impulse of magnitudeµFN∆t in
the same direction, and thus a change in the relative tangential ve-
locity of at mostµFN∆t/m wherem is the mass (assumed equal
for all particles involved). If this is larger than|~vpre

T |, then either
the cloth was slipping and stopped due to kinetic friction, or was
stuck and shouldn’t be allowed to start slipping due to static fric-
tion. Either way the new relative tangential velocity should be zero.
If not, we can simply subtract this off the magnitude of the relative
tangential velocity to account for kinetic friction slowing down the
slipping. This calculation can be simplified by noting thatFN∆t/m
is just∆vN, the change in relative velocity in the normal direction,
which can be directly calculated in the repulsion algorithm. Then
the decrease in the magnitude of the relative tangential velocity is
min(µ∆vN, |~vpre

T |), i.e. our final relative tangential velocity is

~vT = max
(

1−µ
∆vN
|~vpre

T | ,0
)
~vpre

T

We apply impulses to achieve this for both point-face proximities
and edge-edge proximities.

In effect, we are modeling frictional contact with micro-
collisions. We note that if we applied our friction algorithm to rigid
bodies, it would solve the inclined plane problem as discussed in
[Mirtich and Canny 1995]. A similar algorithm for kinetic friction
was proposed by [Jimenez and Luciani 1993] who also calculated a
normal forceFN from the magnitude of their spring repulsion force
and subsequently used it to evaluate their Coulomb friction model.
For static friction they attached a spring between the closest points
of two objects when the normal force is nonzero. This attractive
spring models static friction until the force exerted by this spring
reaches the thresholdµsFN. Beyond this, the spring is removed and
only kinetic friction applies.
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7.4 Geometric Collisions

Repulsion forces alone cannot ensure that no interpenetrations will
occur since positions are only checked at discrete moments in time.
For robust collision handling, the path of the cloth between time
steps must be considered as discussed in section 6.

Some authors back up simulations in time to treat collisions in
chronological order, e.g. [Hahn 1988]. When a single time step
may have thousands of collisions and contacts, as is characteristic
of highly deformable bodies like cloth, this is quite expensive and
can grind the simulation to a halt. The problem was addressed for
rigid bodies by [Mirtich 2000] who processed the rigid bodies in
parallel using a timewarp algorithm to back up just the objects that
are involved in collisions while still evolving non-colliding objects
forward in time. This method works well except when there are
a small number of contact groups which unfortunately is the case
for cloth as the entire piece of cloth has every node in contact with
every other node through the mass-spring network.

Instead of rewinding the simulation to process one collision at
a time, we resolve them all simultaneously with an iterative pro-
cedure as did [Volino et al. 1995; Provot 1997; Milenkovic and
Schmidt 2001]. This does not give the same result as processing
the collisions in chronological order. However, there is enough un-
certainty in the collision modeling and error in the cloth discretiza-
tion that we are already guaranteed to not gettheexact physically
correct answer. Instead we will obtaina physically plausible solu-
tion, i.e. one of many possible physically correct outcomes which
may vary significantly with slight perturbations in initial conditions
or the inclusion of unmodeled phenomena such as interactions be-
tween fuzzy strands of cloth. More details on sampling plausible
solutions according to probability distributions reflecting a number
of factors can be found in [Chenney and Forsyth 2000] who ad-
dressed the related problem of multiple colliding rigid bodies. Sim-
ulating plausible motion in chaotic scenarios was also addressed
by [Milenkovic and Schmidt 2001] who studied problems where
large numbers of rigid bodies were in a single contact group and
employed iterative collision processing techniques, phrased as op-
timization procedures, in order to adjust the positions of the bodies
to avoid overlap.

As discussed in section 6, our geometric collision processing al-
gorithm is activated either when a collision actually occurs or when
geometry (points and faces or edges and edges) is in (too) close
proximity at the end of a time step. Thus, we need to account for
both approaching and separating objects when a “collision” is reg-
istered. If the geometry is approaching, we apply a completely in-
elastic repulsion impulse. Otherwise, if the geometry is already
separating (as may happen at the end of the time step, i.e. a close
call rather than a true collision), we apply a spring based repulsion
force. See section 7.2 for more details on both of these.

The collision impulses can either be applied sequentially or all
at once in a parallel update. Once again, in the case of a parallel
update, situations involving multiple interactions can lead to un-
desirable behavior. This can once again (similar to the repulsion
forces) be alleviated by dividing the resulting impulses by the num-
ber of interactions, or by using a suitable relaxation parameter less
than one (e.g. .25).

While processing all the collisions that occurred during a time
step, we may have inadvertently caused new secondary collisions to
occur. In order to keep the cloth interference free, we must analyze
the newly computed post-collision path of the cloth for possible
collisions and process these as well. This means that the bounding
box hierarchy needs to be adjusted to account for the new post-
collision velocities. Then secondary collisions can be detected and
corrected, etc., and the process continues until a final interference
free state can be computed. Since relatively large bounding boxes
that contain the moving triangles need to be recomputed for every
iteration, and a cubic equation has to be solved for every possi-

ble collision, this may be expensive. Luckily, our repulsion forces
tend to catch and treat almost all collisions making the iteration
scheme here practical to apply even for high velocity cloth with
many nodes and a high degree of folding and contact. Also, there
are some multiple collision situations, such as a node sandwiched
between two approaching triangles, that are resolved immediately
if we apply impulses in parallel (but can iterate for a long time if
they are applied sequentially instead, although Gauss-Seidel gener-
ally converges faster than Jacobi iteration). However, there are still
situations where many iterations are required, so after a few itera-
tions we switch to a failsafe method which quickly eliminates all
collisions. We use the method proposed by [Provot 1997], but not
followed through in the literature, possibly because the formulas
proposed in [Provot 1997]do notgive true rigid body motion. We
give corrected versions below.

7.5 Rigid Impact Zones

[Provot 1997] proposed collecting the nodes involved in multiple
collisions into “impact zones” which are treated as rigid bodies.
This is justified by observing that when cloth bunches together fric-
tion will prevent most relative motion. Thus, after a few iterations
of applying local impulses as outlined above, we instead switch to
merging lists of nodes representing impact zones. Initially, each
node in its own list. Then, when a point-face or edge-edge colli-
sion occurs, the lists containing the four involved nodes are merged
together into one larger impact zone. The impact zones are grown
until the cloth is collision free. The velocity of the nodes in the im-
pact zone is derived from a rigid body motion that preserves linear
and angular momentum. The formula for angular velocity given in
[Provot 1997] is flawed, so we present a corrected version here.

To find the rigid body motion we first compute the initial center
of mass of the impact zone and its average velocity

~xCM = ∑i m~xn
i

∑i m
, ~vCM = ∑i m~vn+1/2

i
∑i m

then the angular momentum of the nodes with respect to their center
of mass

~L = ∑
i

m(~xn
i −~xCM)× (~vn+1/2

i −~vCM)

and the 3× 3 inertia tensor of the current configuration of nodes
(usingδ to represent the identity tensor)

I = ∑
i

m
(
|~xn

i −~xCM|2δ − (~xn
i −~xCM)⊗ (~xn

i −~xCM)
)

.

The rigid body angular velocity that would preserve angular mo-
mentum is~ω = I−1~L, so the new instantaneous velocity of nodei
is

~vCM +~ω × (~xi −~xCM)

However, we want the average velocity over the time step of finite
size∆t, so that the update~xn+1 =~xn+∆t~vn+1/2 exactlycorresponds
to a rigid body motion, i.e. so that lengths and angles stay fixed. If
this last condition is not enforced (it was not addressed in [Provot
1997]), then self-intersection can occur. Assuming that we can ac-
cept a smallO(∆t) error in the axis and angle of the total rotation,
we make the approximation that~ω stays constant over the time step.
Then we find the fixed and rotating components of the position

~xF = (~xi −~xCM) · ~ω
|~ω|

~ω
|~ω| , ~xR =~xi −~xCM−~xF

giving the final position

~xn+1
i =~xCM +∆t~vCM +~xF +cos(∆t|~ω|)~xR+sin(∆t|~ω|) ~ω

|~ω| ×~xR.
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The new average velocity is then~vn+1/2
i = (~xn+1

i −~xn
i )/∆t.

Applied on its own, this impact zone method has a tendency to
freeze the cloth into nonphysical clumps. However, a combination
of our repulsion forces and the initial collision impulses tend to
keep these impact zones small, isolated and infrequent. Moreover,
once formed, they are short-lived as the repulsion forces tend to
quickly separate the offending nodes.

7.6 Updating the Final Velocity

When there are repulsions or collisions, we need to update the ve-
locity from vn+1/2 to vn+1. For central differencing we need to
solve the implicit equation

vn+1 = vn+1/2 + ∆t
2 a(tn+1,xn+1,vn+1)

wherea(t,x,v) is the acceleration.
In many cloth models, such as ours, the damping forces (hence

accelerations) are linear in the velocities giving the linear system

(I − ∆t
2

∂a
∂v )vn+1 = vn+1/2 + ∆t

2 ae(tn+1,xn+1).

Here∂a/∂v is the Jacobian matrix of accelerations with respect to
velocities, andae(t,x) is the elastic component of acceleration, i.e.
everything apart from damping. In any reasonable cloth model this
matrix will be symmetric positive definite (or can be safely made
so, see [Baraff and Witkin 1998]) after multiplying both sides by
the mass matrix, i.e. converting velocities into momenta and ac-
celerations into forces. Then the conjugate gradient algorithm (e.g.
[Saad 1996]) can be used to solve forvn+1. For nonlinear damping
Newton’s method can be used requiring similar linear solves.

As an alternative for the nonlinear case, or when solving the lin-
ear system proves too difficult, one can explicitly march the velocity
forward in time. Starting withu0 = vn+1/2 we advance

um+1 = um+ka(tn+1,xn+1,um+1)

ending withvn+1 = uM where∆t/2 = Mk. Each substep is solved

with fixed point iteration, starting with initial guessu(0)
m+1 = um for

um+1 and continuing with

u(i+1)
m+1 = um+ka(tn+1,xn+1,u(i)

m+1)

for a given number of iterations. The substep sizek is chosen with
k|λmax(∂a/∂v)|< 1 in order to guarantee convergence. This is es-
sentially the same as the stability limit of forward Euler time step-
ping. Note that this can be made more efficient by separating the
calculation of acceleration into the elastic componentae mentioned
above (which does not change) and the damping component.

As mentioned in section 4, we monitor the strain rate in the cloth
and introduce additional damping if necessary. This is important
for dealing with especially difficult collision situations. While our
algorithm can fully robustly handle them, bad strain rates in the
cloth due to the collision impulses can cause additional unwanted
collisions in subsequent time steps slowing the simulation down
and producing visually inaccurate results. In addition, when one
node collides and impulsively changes its velocity so that it is dra-
matically out of sync with surrounding nodes, our strain rate lim-
iting procedure puts the nodes back in sync reducing the velocity
of surrounding nodes even though they have not yet been involved
in a collision. This keeps our cloth from experiencing unnecessary
stress and also increases the likelihood that repulsion forces will
stop the surrounding nodes before they actually collide, again dra-
matically reducing the number of collisions that have to be dealt
with.

8 Post-Processing with Subdivision

Sharp folds and wrinkles in the cloth mesh give undesirable angu-
lar features when rendered as plain triangles. For visually pleasing
animations a smoother surface is desired. Some authors have di-
rectly simulated smooth surfaces instead of simple triangle meshes.
For example, [Thingvold and Cohen 1992] used dynamic B-splines
which allowed them to interactively refine the mesh in regions of in-
terest associating the control points with their dynamic simulation
mesh nodes. They derived a number of rules for when, where and
how to refine, even detecting when mesh refinement would cause
intersection and then either stopping refinement or backing up the
simulation in time to avoid intersection. [DeRose et al. 1998] ex-
ploited the convex hull properties of their subdivision surface model
of cloth to accelerate collision detection. [Grinspun and Schröder
2001] rigorously modeled thin manifolds with subdivision surfaces
detecting collisions with their derived bounds on surface normals
and refining the mesh as required to resolve them.

We propose a fast and simple yet collision-aware post-processing
subdivision scheme to smooth our triangle mesh. Our post-
processing scheme takes the existing intersection free simulation
data and produces a finer, more detailed and smoother approxima-
tion to the manifold. We never have to back the mesh up in time or
cease refinement, or even have to consider refinement at all in the
simulation. Our algorithm efficiently works independently from the
simulation on the positions recorded for each frame. In addition,
each frame can be processed independently just as in a rendering
pipeline.

Another motivation for our post-processing is found in [Howlett
and Hewitt 1998] who addressed cloth collisions with volumetric
objects. They ensured that cloth nodes remained outside the objects
making the collision-handling algorithm faster and simpler, but al-
lowed edge and face collisions with the objects. These were han-
dled in a post-processing step before rendering where they added
nonactive points and adjusted their positions to eliminate intersec-
tions. Although we treat cloth-object collisions in a more detailed
manner, our subdivision approach naturally allows this clever “lie
about it” strategy explained in [Baraff 2001] where small interpen-
etrations are allowed in the simulation but are corrected before ren-
dering. [Howlett and Hewitt 1998] further processed their cloth in
an attempt to preserve area, but we do not undertake this endeavor
since the idea of subdivision is that it recovers thetrue geometry
approximated by the coarse simulation mesh.

Our post-processing algorithm proceeds as follows. If we al-
lowed intersection with objects in the simulation, we begin by ad-
justing the cloth positions in the given frame to eliminate them it-
erating back and forth with an adjustment to eliminate cloth-cloth
intersections that those adjustments may have caused. We use the
repulsions and collision impulses from sections 7.2 and 7.4. When
this is finished, our original mesh is intersection free even account-
ing for rounding error. We then subdivide the mesh putting a new
node at the midpoint of each edge. Since the original mesh was
intersection free and the subdivided mesh lies exactly within the
original mesh, the subdivided mesh is guaranteed to be intersection
free as well.

Next we use the modified Loop subdivision scheme [Loop 2001]
to find smoother positions for all the nodes of the subdivided mesh.
Unfortunately, moving to these smoothed positions may create in-
tersections. However, we can view the vector from a node’s original
position to its smoothed position as a pseudo-velocity and apply our
collision detection algorithms from section 6 to determine when the
intersection would occur. We stop the nodes at that point (or just
before that point to avoid difficulties with rounding error) as if they
had inelastically collided. We of course need to check again to see
if these adjustments to the smoothed positions caused new intersec-
tions. Typically only a few iterations are required to eliminate all
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Figure 2:The friction between a rotating sphere and a piece of
cloth draped over it creates a complex structure of wrinkles and
folds.
intersections especially since the convex-hull property of the subdi-
vision means intersections are unlikely in the first place. A solution
is guaranteed to exist, since the new nodes can simply be left on the
triangle they were created on. Once we have a smoothed but inter-
section free subdivided mesh, we can subdivide again continuing
until the desired resolution is reached. Since the cloth is originally
separated by a finite distance, but each step of subdivision smooth-
ing moves the nodes exponentially less and less, we very quickly
find no more adjustments need to be made.

We caution the reader that this post-processing technique per-
forms exceptionally well because we use a fairly high resolution
dynamic simulation mesh. The efficiency of our repulsion and col-
lision processing algorithms allows the use of such a mesh, and we
have have not noticed any problems with visual artifacts. How-
ever, on a relatively coarser mesh, one should be aware of potential
artifacts such as ”popping” that might result from using this subdi-
vision scheme.

9 Examples

We demonstrate several examples using our simple cloth model
with highly complicated folding where most of the nodes (tens of
thousands in the dynamics and hundreds of thousands after subdi-
vision) are in close contact with each other as opposed to, say, the
simple draping of a skirt about a mannequin. In figure 1, a curtain is
draped over the ground and a sphere. Our biphasic spring model en-
ables complex wrinkling and eliminates undue deformation. When
the sphere moves up and away, the curtain flips back over on itself
resulting in a large number of contacts and collisions. The highly

Figure 3:A tablecloth draped over table legs with no tabletop is
dragged to the ground by a descending sphere.

complex structure of folds and wrinkles is stable due to our static
friction model. When a second ball pushes through the complex
structure eventually slipping underneath, the algorithm still effi-
ciently and correctly resolves all contacts and collisions. Note how
realistically the cloth unravels by the final frame.

Figure 2 illustrates our static and kinetic friction algorithm with a
piece of cloth draped over a rotating sphere. Figure 3 shows a table-
cloth draped over four table legs with no tabletop. The object-cloth
contact is tricky due to the sharp corners of the legs particularly
when a sphere descends through the cloth down onto the ground,
but our repulsion forces prevent unnatural snagging. Simulation
times were reasonable even for these complex examples. Typically,
a piece of cloth with 150×150 nodes runs at about 2 minutes per
frame on a 1.2GHz Pentium III. Finally, figure 4 shows the draping
and folding of a robe around a digital character from a production
animation system utilizing a number of our techniques.

10 Conclusions and Future Work

The synergy of efficient repulsion forces combined with robust geo-
metric treatment of collisions has allowed us to efficiently simulate
complex cloth motion. The prevention of self-intersection together
with kinetic and static friction produces complex, yet stable folding
and wrinkling unachievable by simpler approaches. In addition,
our post-processing subdivides simulation data without introducing
self-intersection resulting in even higher quality animations. Our
algorithm makes few assumptions about the internal cloth dynam-
ics, and thus can easily be incorporated into existing codes with
advanced cloth models.

We are close to a fully parallel implementation exploiting the
parallel nature of most of our scheme. Other areas we plan to de-
velop include modeling different values for kinetic and static fric-
tion coefficients, adaptive meshing to better resolve folds, and op-
timization of the bounding volume hierarchy. Furthermore, we are
eager to apply our techniques to characters with highly wrinkled
loose fitting skin.

Two rather important problems that we have not addressed are
the interactions between cloth with sharp objects and the behav-
ior of cloth when trapped in between two solid deformable or rigid
bodies. We refer the reader interested in sharp objects to the recent
developments of [Kane et al. 1999; Pandolfi et al. 2002]. For the
case of intersecting collision bodies additional technologies like the
ones developed by Baraff, Witkin and Kass (Personal Communica-
tion 2002) are required.
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Figure 4:Frames from a production animation of a robe draped
over a digital character.
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